— @ 2
A Simple Computer

4+ Determine hardware requirement in design of a simple computer

4+ Discuss use of Register Transfer Language in computer design

4+ Design control unit of a simple computer

4+ Discuss how to program the simple computer in solving various problems

In this chapter, we demonstrate how the knowledge that you gathered in this book can take you to the next
higher level, where you can start designing a digital computer. A digital computer is capable of computation
and taking decision based on binary coded instructions stored inside it. The central processing unit (CPU),
also known as the brain of the computer sequentially fetches these instructions, decodes it and then executes
it by performing some action through available hardware. In this chapter, we’ll design a simple computer,
which has a limited instruction set but is capable enough to solve variety of arithmetic and logic problems.
The technique you learn in developing this simple machine will be useful when you go for a full-fledged
computer design in some higher-level courses.

We begin the chapter by defining a small problem, which our simple computer should be able to solve.
Next, we spell out different hardware components required as building blocks. We'll also discuss a simple
hardware operation description language, called Register Transfer Language (RTL) useful for state machine
design. Through RTL we’li describe all the operations of our simple computer. Then we’ll design the control
unit that will coordinate all these operations. Finally, we will discuss how to program this simple computer to
solve the problem we started with and many other arithmetic and logic problems.

@ Digital Principles and Applications
. 16.1 BUILDING BLOCKS .

In Section 1.6 of Chapter 1, we have broadly seen the kind of components required for designing a computer.
In this chapter, we address how to design central processing unit of a simple computer that interacts with a
small memory module. Before we proceed further let us define a problem that our computer is supposed to
solve. This is not the only problem it can handle. Depending on how we program it, we will be able to solve
different arithmetic and logic problems and that is shown towards the end of this chapter through examples.
The purpose of defining a problem is to choose specific hardware components that will serve as building
block of our simple computer.

The Problem

Add 10 numbers stored in consecutive locations of memory. Subtract from this total a number, stored in
11" location of memory. Multiply this result with 2 and store it in 12th location of memory. All the numbers
brought from memory lie between 0 and 9.

Memory

Since, the problem says the numbers or data to be fetched from memory and we also know that programs,
Le. binary coded instructions are also stored in memory, let us divide the memory used in our computer in
two parts. One part stores the program or series of instructions the computer executes sequentially and this is
known as program memory. The other part houses data that program uses and is also used for storing result.
This is called data memory. From the given problem we find, we need 12 memory locations for data storage.
We expect our computer won'’t need more than 20 instructions to complete the given task hence, a memory
with 32 locations (integer power of 2) can be selected for our computer.

Now we try to decide how many bits of information we store in each address location. Usually, bits in
memory locations are stored in muitiple of 8 called byfe. Let’s see if our job can be done with 8 bits. Each
memory location stores data between 0 and 9 on which program operates and thus require only 4 bits. The
final result at most can be 10 x 9 x 2 = 180 which requires 8-bit for representation. So the data memory can
be of 8-bits with which we can represent decimal number up to 2°~1 = 255.

Let’s now see the requirement of program memary, There, in each location, certain number of bits are
allocated that defines the instruction to be executed. This is called operation code or in short, opcode. The
rest of the bits can be used for referring the memory location from which data is to be brought or stored,
if required by the instruction. Since, 32 memory loeations require log,32 = 5 bits for memory referencing
we’ll have 8 — 5 = 3 bits for opcode specification giving 2°= § different opcodes (Fig. 16.1). We’ll see that
8 instructions are sufficient for the given kind of task in our limited ability computer. Hence, one important
hardware component of our computer gets decided. The memory to be used is of size 32 x 8.

The above mode of addressing memory for data is called direct addressing. If the address mentioned
in the instruction contains address from which actual data is to be brought it is called indirect addressing,
If after opcode, in place of address actual data is 7 5 4 0
made available, it is called immediate addressing. [Opcode] Address |
Note that, in immediate addressing data cannot be
more than 5 bits as 3 bits gets used in opcode. Also (:m Three Most Significant
note that the instruction like this is called single Bits (MSB) are opcode
byte instruction. If an instruction requires 2 bytes and five Least Significant
to be fetched from program memory it is called 2- Bits (LSB) are address

A Simple Computer Design @

byte instruction. Obviously. in 2-byte instruction number of opcodes or memory addressing capability can be
more than a single byte instruction.

Register Array

The computer needs a set of registers to perform its operation. Let us define them and assign task to each one
of them for our simple computer. Notc that, we are using a 32 x 8 memory module.

Memory Address Register (MAR) is a 5-bit register that stores the address of the memory location referred
in a particular instruction. The output of this is fed to a 5-to-32 address decoder, Each output of the decoder
points to a location in the memory. All memory referenced instruction loads memory address in MAR.

Memory Data Register (MDR) is an 8-bit register that stores the memory output when a memory read
operation is performed. During memory write operation it stores the value that gets written to the memory.
Thus it can also be called a memory buffer. In arithmetic or logic operation when more than one operand is
required by ALU, one operand in our simple machine comes from MDR.

Program Counter {PC) is a 5-bit counter that stores the address of the memory location from which next
instruction is fetched. At power on, our machine PC is reset so that its content is all zero. Thus location
00000 has to be a part of program memory and this is also the starting address from which program execution
begins. Since, in our simple machine all the instructions are single byte instruction, every time an opcode is
fetched we’ll increment PC by one, and thus PC will point to location of the next opcode.

Instruction Register (/R) is a 3-bit register, which retains the opcode till it is properly executed in one or
more clock cycles. Since all memory read and write operations are done through MDR, after an instruction is
read from memory, 3 MSB that contains the opcode are transferred to IR.

Accumulator (4CC) is a multi-purpose register that always stores one operand of an arithmetic or logic
operation. The result of this operation, i.e. ALU output is also stored in ACC. Functions like shifting of bits
to left or right are also carried on ACC. Thus, in our simple computer ACC is a shift register with parallel
load facility.

Timing Counter (7C} is a synchronous parallel load counter that stores and updates the timing information.
The timing counter output is decoded to generate different timing signal, which in turn triggers different
events in execution of an instruction. The counter is reset synchronously with clock once an instruction is
fully executed. If an instruction is conceived as a macro operation then series of sequential steps necessary
to carry out the instruction in the computer is called micro operations. In our simple computer, we are not
expecting more than § micro operations for any macro-operations and hence a 3-bit counter is sufficient.
Later if we see, we need more than 8 micro operations we'll change it to a 4-bit counter. Note that, a master
clock (also called system clock) to which all the state changes of the computer are synchronized, triggers this
counter. Also note, TC has power on reset facility, i.e. when the computer is switched on it stores 000.

Start/Stop Flag (S} is a flip-flop which when set, stops execution of the program. This we do in our simple
computer by inhibiting the master clock. Like program counter, this also has a power-on-reset facility so that
when the computer is switched on the master clock is not inhibited.

Other Important Hardware

Arithmetic Logic Unit (ALU) is a versatile combinatorial circuit that can perform a large range of arithmetic
and logic operations. Since the data is 8-bit long, we use an 8-bit ALU. The control input value decides the
function ALU executes at a particular time. ALU can accept up to two operands at a time, one from ACC and
the other from MDR. The ALU output is stored in ACC. If addition operation generates a carry output from
ALU, that can be stored in a flip-flop, often called carry flag (CY). Since, in our problem numbers are smalil in

@ Digital Principles and Applications

magnitude the 8-bit ALU doesn’t generate carry output and we don’t need CY flag for our simple computer.
Note that, ALU cannot perform multiply and division operation for which we use special hardware or some
indirect technique.

Instruction Decoder (ID) is a 3-to-8 decoder, which takes input from /R and thereby decodes the opcode.
In our simple computer there are 8 different opcodes, each one making one of the decoder output (D, D ...,
D) high. This in turn initiates specific micro operations necessary to execute that opcode in subsequent clock
cycles.

Timing Sequence Decoder (TSD) is again a 3-to-8 decoder that takes input from TC and provides necessary
timing information in the form of decoded output (7, 7..,..., T,) for a micro operation to be executed.

BUS is a group of wires that serve as a shared common path for data transfer of ali the devices connected
to it. With this, we do not need a separate device to device connection which increases the number of wiring
specially when large number of devices are used in a system. Since, the largest group of binary data that is
transferred in our computer is 8-bit, the bus used is an 8-bit bus.

BUS Selector {BS) is a multiplexer, which decides which one of all the connected devices is in transmission
mode, i.¢. has placed data in the BUS. Note that, if more than one device try to send data simultaneously,
there will be a conflict producing etroneous result. However, in our computer we may allow more than one
device connected to BUS to receive data from BUS. We’ll see shortly that only PC, ACC, MDR and ALU
want to transmit or place data on the BUS. AMAR and IR only receive data and other hardware give control
signal and don’t do data transfer. Thus, BS has to select one of the four devices and uses eight (each one for
one bit) 4-to-1 multiplexer type of device. We can also use tri-stated output for bus connection (Section 14.6
of Chapter 14) that will reduce the current loading on the device when it is not selected.

From this discussion we can draw the data path of our simple computer as shown in Fig. 16.2. Here, by
data we mean address, opcode as well as operand and they move from/to memory, register, ALU, etc. Of
course, we need another set of path to send control signal to various hardware to carry out microoperations.
This is called control path and we’ll design it when we define the instruction set for our computer.

Generally speaking, address bus is the group of wires that transfer address information, data bus is another
group that transfers data and control bus transfers control information. Often, address information and data
are transferred through a common bus and a control logic decides which is to be transferred and when. You
might have noticed that in our simple computer design, we have used a common address and data bus. More
about control bus will appear in Section 16.4 where we discuss the design of control unit.

Find in Fig. 16.2 the direction of arrow that shows the direction of data flow. Note that, IR and
MAR can only receive data from BUS; PC can only send data by BUS; ACC and MDR can do both;

Memory data transfer takes place only via MDR and operands of ALU come from ACC and MDR and
result is sent via BUS,

In a particular configuration each memory location contains 16-bit data. In program memory,
if 4 MSB contains opcode and rest contains address of memory lecations give (a) Number of

opcodes (b) Size of memory (¢) Size of PC, IR, ACC, MAR and MDR.

Solution

(a) Number of opcodes = 2* = 16 (Maximum) _ . _

(b) Number of address bits = 16 — 4 = }2. No. of memory locations = 22 = 22.2" = 4K. So size of memory is
4K x 16. : .) . o : .

(¢) Size of PC and MAR = No. of address bits = 12. Size of IR = Size of opcode = 4. Size of 4CC and MDR = No,
of data bits = 16 S L .

A Simple Computer Design @

I8
15 43 3
8 [3

’_J £ j}jS Memory

le [l [’ 4cC| [LALU 2 | 32x8
18 8

MDR

8

Data path of the simple computer

1. What is the highest integer in decimal that we can store in 16-bit data field?
2. Whatisanopcode? .. . -
3. What is the function of program counter?

4. What is indirect addressing? .

16.2 REGISTER TRANSFER LANGUAGE |

Before we go for design of control path and the control unit as a whole we have to define macro operations
and then we need to break up each macro operation in series of micro operations at register level. Register
Transfer Language (RTL) gives a simple tool through which these micro operations can be expressed and
then coatrol unit can be designed from that. The basic structure of this language is

X:A«B

This means, if condition X is TRUE, i.e. X = 1 then content of register B is transferred to register 4. X can
be a single logic variable or a logic expression like xy = x&y, x + y=x | ¥, etc. In RTL we distinguish logic
operation ‘OR’ from arithmetic operation “addition’ by assigning symbols * |*and *+ respectively. The logic
AND is expressed by symbol ‘&’. However, if the ‘+' sign appears left to *:* in an RTL statement it means
logical OR and *." refers to logical AND. This is so because to left of *: only logical operators can reside.
Often AND, OR, NOT are expressed by *A’, *v’, ‘~" respectively. Also note, this register transfer destroys
the previous content of 4 but not that of B. Both the register 4 and B now have the same value. If register
transfer takes via BUS

A« B=BUS<+ B, A« BUS

Since, BUS is not a register but a group of wire this means B getting access to BUS through BUS selector
(BS}) and the whole event takes place in one clock cycle. Figure 16.3 pictorially depicts register transfer
without and with BUS.

To write anything to memory, in our simple computer we have to place the address information in M4R
and the data to be written in MDR. Thus, memory write operation in RTL is expressed as

X:M[MAR] « MDR

Digital Principles and Applications

BS

BUS .

Select B

4 B

X —| Load | | |

(b)
Register transfer A — B: (a) without BUS, (b) with BUS

Similarly, memory read operation is also done through MAR and MDR and RTL expression is
X: MDR «- M[MAR)
If certain bits of a register are to be addressed we use RTL as follows:
X:IR « MDR[T:5]

The statement above refers to transfer of three most significant bits of MDR to IR, a 3-bit register when
X=1

The arithmetic and logic operations of ALU that bring operands from ACC and MDR and store the result
in ACC can be expressed in RTL in the following way

X:ACC « ACC & MDR [logic AND]

X:ACC « ACC | MDR [logic OR]

X:ACC « ACC & MDR [logic EX-OR]
X:ACC « ACC [logic NOT]

X:ACC « ACC + MDR [arithmetic addition]
X:ACC « ACC — MDR [arithmetic subtraction]
X:ACC &« ACC+1 [increment by 1]

etc.

And finally if data is to be shifted in a register say by 1 bit to left we can write
X:ACC[T:1] « ACC[6:0], ACC[0] « 0
If such lett shift occurs through carry the statement will be
X ACC[7:1] « ACC[6:0], ACC[0] « CY¥

Normally, we come across these four kinds of micro operations namely (i} Inter-Register transfer
(ii} Arithmetic operation (iti) Logic operation and (iv) Shift operation. Note that, left shift without carry
can also be obtained by addition operation as shown in Example 6.14 of Chapter 6. Figure 16.4 shows how
addition operation 4 ¢ A + B takes place through ALU and BUS.

Note that, 7C and PC can increment by 1 without taking help of ALU as they are designed to be parallel
load up counters. For more complex processor unit where 2 byte, 3 byte instructions are possible we can have
an adder unit accessible by PC.

A Simple Compurter Design @

BS

BUS

Select ALU

A ALU B

X—-i Load I [I_"E?ontrol :

L] input for
addition

The micro operation A - A + B

Explain what the following RTL statements perform
T : MDR « ACC
T,: ACC « ACC’
T,: ACC « ACC & MDR

Solution The first statement says if T,= 1, content of 4CC is transferred to MDR, The second statement says if

" T,= 1, content of ACC is comptemented. The third statement says if T, = 1, bit-wise AND operation is perforrned on
ACC and MDR and the result is stored in ACC. Since content of MDR and ACC were complement of one another
before this statement is executed, by AND operation all the bits of ACC become zero, i.e. 4CC is reset by these three
statements irrespective of its initial content,

Note that, T ; T, and T, can be output of a timing sequencer, which become active one after another in consecutive
clock cycles. This way, ACC can be cleared in t'hre_e clock cycles by above RTL. statements.

o ($ISELF-TEST)
5. What is RTL? - |
6. What is to be changed in Fig. 16.4 to perform 4 « 4 & B?

16.3 EXECUTION OF INSTRUCTIONS, MACRO
AND MICRO OPERATIONS

In a computer, execution of instructions is carried through macro operations which again can be subdivided
into micro operations. In this section, we first define the macro operations that we want to be executed
in the computer we are designing. Next, we’ll discuss micro operations necessary to execute each macro
operation and it will be expressed through RTL. Remember that we have assigned only 3-bits as opcode and
hence we can define 2° = 8 instructions or macro operations with them. Table 16.1 lists all the instructions,
corresponding mnemonics (easy to remember short forms), opcodes and 3-t0-8 decoder (ID) output when IR
is loaded with this opcode.

@ Digital Principles and Applications

Instruction Set for the Simple Computer

Macro operation performed Instruction Opcode Instruction decoder
MRemonic {ID) output activated

Load data from a specified memory LDA 000 D,

location to ACC

Store ACC data in a specified STA 001 D,

memory location :

Haits execution of the program _ HLT 010, _ D,

Perform bitwise AND operation of AND RS 2 % R D,

ACC with data of a specified '

memory location and store result

mACC L

Perform bitwise NOT operation of NOT o 100 D,

Perform 1-bit left shift of ACC SHL 101 D,

with ACC[0] 0 o

Perform addition operation of ACC ADD D,

with data of a specified meinory B

location and store result in ACC

Subtract from ACC, dataofa SUB D,

specified memory location and store

result in ACC

Instruction Cycles

To carry out each instruction or macro operation the computer has to go through three distinct phases or
cycles. In fetch cycle it brings the instruction or opcode from the program memory. In decoding phase it
decodes the opcode and finally the execution is done in execute cycle. These cycles together known as
instruction cycle are again repeated for next instruction. It is understandable that fetch and decode phase
will be same for all instructions in our simple computer as we have only single byte directly addressed
instructions. However, the execution cycle will be different for different instructions depending on the tasks
the instruction wants to perform.

Fetch Cycle

An instruction cycle begins with fetch cycle when TC is reset to 0. Then, only T, output of TSD will be high
and rest low. As told before PC contains the address of the location from which next instruction is to be
fetched, content of PC is loaded into MAR in T,

At the next trigger of master clock 7C is incremented by 1 so that 7, becomes high and other outputs
of TSD are low. In this clock cycle, content of memory from location specified by MAR (through 5-to-32
address decoder attached to memory) is loaded to MDR. PC now can be incremented to point to address of
next location in program memory, which stores next instruction.

A Simple Computer Design @

In the next clock cycle TC generates T,= 1 when opcode from 3 MSB of MDR is transferred to IR and 5
LSB to MAR. Content of IR is used for decoding opcode in decode phase. Content of MAR will be useful in
execute phase if the opcode makes some memory reference, the address of which remain available at MAR.
In RTL the above operations can be represented as

T,: MAR « PC
T : MDR < M[MAR], PC « PC+1
T,: IR « MDR[7:5), MAR « MDR[4:0]

Decode Cycle

In decode cycle we decode the opcode fetched from program memory. Since at T ,» register /R is loaded with
opcode and 3-10-8 decoder (ID) that decodes the opcode is a combinatorial circuit, we finish decoding in T,
itself. In RTL we express it as

T,:D,... D, < DECODE (IR)

Often, the 3rd statement of previously mentioned fetch cycle that loads IR with new opcode is considered
a part of decode cycle or fetch-decode together is called fetch cycle.

Execute Cycle

Micro operations for each instruction are different and we list them first and then give the explanation.

LDA D.T, : MDR « M[MAR]

DT, ACC «— MDR, TC ¢ 0
STA D\T,: MDR « ACC

DT, M[MAR] < MDR, TC <0
HLT D,T,:S« 1, TC«0
AND D.T, : MDR « M[MAR]

DT, :ACC+—ACC& MDR TC« 0
NOT DT, :ACC— ACC’, TC+ 0
SHL D.T, : ACCTT:1] & ACC[6:0], ACC[0] <~ 0, TC 0
ADD DT, : MDR « M[MAR]

DT, :ACC < ACC+MDR, TC <0
SUB D.T, . MDR « M[MAR]

D,T,: ACC ¢ ACC ~ MDR, TC 0

A quick overview of the above list shows, at the completion of each instruction c¢ycle {fetch-decode-
execute) 7C is reset by which the computer goes to T state and fetch cycle for next instruction begins. Note
that, a detailed discussion on execution of the program at register level for every clock trigger appears in
Section 16.5.

In operations like LDA, AND, ADD, SUB data is brought from memory, address of which is available in
MAR. In executing STA the MAR content denotes the location where data is to be stored in memory.

@ Digital Principles and Applications

Macro operations AND, NOT, ADD, SUB use ALU. When HLT is executed S flag is set which stops
execution of the program. This flag is cleared through power-on-reset.

Now let’s pick up one macro operation (say, LDA) and see how it gets executed through its constituent
micro operations. From Table 16.1 we find instruction LDA transfers content of a specified memory location
to ACC. If the opcode fetched in fetch cycle is 000 it refers to LDA operation. In decode phase, opcode 000
makes D = 1 and the other outputs of ID are all zero. This is so till /R is refreshed or receives another opcode
in the next fetch cycle, state 7,. Till then D, gives output 1.

The computer enters execution phase at state 7, (7, = 1). Now as D, = 1, condition DT, = 1 and data is
read from memory and loaded in MDR. Note that, the address of memory location from which data is to be
brought was made available to MAR in state 7,. Also note that, memory content cannot directly be loaded
into ACC (refer to data path shown in Fig. 16.8) and is to be done through MDR. In next clock cycle, i.e. when
D, T, = 1 the content of MDR is transferred to 4CC via BUS and the macro operation is complete. We reset
TC and let the computer begin a new instruction cycle. This analysis can be extended to explain execution
of other instructions.

At this point we make an important observation that all the instruction executions are completed within
- 5 clock cycles (T, to T,) and hence a 3-bit counter, which can count up o 8 is sufficient as 7C in our simple
computer.

7. What is a fetch cycle?
8. Why TC is reset every time an instruction is executed?

. 16.4 DESIGN OF CONTROL UNIT '

The control unit is primarily a combinatorial circuit that supplies necessary controls inputs to all the important
hardware e¢lements of the computer. This takes timing information from computer master clock and is thus
responsible for providing necessary timing and control information. The path through which these signals
travel to reach different parts of a computer is called confrol path. Often we assign a group of wires, called
control bus as shared path for this. The control logic is arrived at from (i) basic computer architecture we
have adopted in the beginning, (ii) conditions appearing at lefi hand side of symbol *;” in RTL statements
for our simple cornputer, given in previous section, and (iii) certain other issues, e.g. power-on-reset, control
variables need to be activated for intended operation of a particular hardware, etc.

Loading Registers

Let us first see when paraliel load control of IR is to be activated. We find from discussion of previous section,
only during 7, it is loaded. So TSD (Timing counter decoder) output 7, can be directly connected as parallel
load control input of /R. Every time 7, is active this loads three MSBs of BUS (data path is such, refer to
Fig. 16.2), which at that time holds MDR value, into IR. Obviously, at that time BUS selector (BS) should
place content of MDR into BUS. This we’ll discuss while designing control for BS.

What happens if we allow loading of IR say, in every clock cycle instead of above? Whenever there is
some data made available in BUS by any hardware 3 MSB of that will be loaded into IR; 1D (decoder) will
immediately change and execution corresponding to a different opcode, not the intended one, may begin. You

A Simple Computer Design

@

can understand it’ll be all chaos without any sense. Thus we return sanity to our simple machine by loading
IR only when opcode is fetched, i.e. in 7, and we can write logic relation

LOAD =T,
We see, MDR is loaded during T\, D,T,, D\T,, D.T,, D.T,, D.T, and corresponding condition is
LOAD, =T, +(D +D +D +D +D)T,
Proceeding in same manner we can write, LOAD, =T + T, and

LOAD, .. =D,T,+(D,+ D, + D, +D)T,

Memory Read/Write

Memory read signal is invoked by: READ, =7 +(D +D,+D +D)T,

Memory write signal is invoked by: WRITE , =D.T,

ALU Control

Control variables of ALU activated for addition: ALU, =DT,
Control variables of ALU activated for subtraction: ALU . =D.T,

Control variables of ALU activated for logic AND:

Control variables of ALU activated for logic NOT:

ALU, ., = DT,
ALU, ., =D,T,

BUS Controller

BUS controller gives access to ACC by BUS, ..=DT,
to PC by BUS, =T,
to MDR by BUS, . =T,+ DT,
and to ALU by BUS, =D, I, +(D,+D,+D)T,

Thus, selection inputs of eight 4-to-1 inultiplexers that places data from one of these four devices ACC,
PC, MDR and ALU on BUS should become active when corresponding conditions mentioned by above logic
equations are met.

Other Control Signal

The condition for setting START/STOP flag S is:
The condition for shift left operation of ACC is:
The signal that triggers increment of PC;

SET,=D,T, [§ is power on reset]
SHIFT_LEFT, .= DT,

ACC

INCREMENT, =T,

Timing counter TC is synchronously reset by: RESET, .=(D,+D,+D) T, +(D,+ D + D,

+D, 5+ D 7) T, 4
Finally, the master clock remains enabled if flag § is not set. Thus ENABLE =5

CLOCK
Based on these equations the control unit of our simple computer can be made. We show the control circuit
of ACC, TC and TSD, BS in following three examples. Refer to problems of Section 4 of this chapter for

more circuits. Together they make the contro! unit of our simple computer.

@ Digital Principtes and Applications

Solution The paraliel load shift register ACC in the simpie computer designed shifts data to left while serial data
in is 0 (GND). It also loads paralicl data from BUS. The conditions for these two operations are shown above i in the
form of logic equations. The corresponding diagram is shown in Fig. 16.5. '

Show using circuit diagrams the control inputs to ACC.

From Bus
Parallel
_ data in
b SI;;(E ?ft Serial data in
, 3 AcC <p—— Clock
J—
7, -_—}
—— To ALU
Dy — Parallel data
T, V4 out
Dy
‘ To BUS
D, —
) D, : input from ID
T, : input from TSD
Dy —

m Control for ACC

Show using diagrams control inputs to 7C and its connection to TSD,

Solution mmmmmamﬂ%nymeuﬂhﬁfmmWhMMTmmW
- acoording to control logic discussed in this section, 000 ls,synchrosaouslyloadedandupcm:esm Themmad
circuit diagram is shown in Fig. 166,

Show using diagram how bus controller works.

Solution The controller developed from control equations discussed in this section is shown in Fig. 16.7. This
is developed on multiplexer logic fike Fig. 4.5 of Chiaptér 5. A tri-state bus control ¢an 5lso be designed similar to
diagram shown in Fig. 14.26 of Chapier 14. There the DISABLE control mputm]lbefedbycomplmmofmpecuve
BUS activate s:ml,ae. comp}mtof BUS, ., BUS, etc.

Note that, PC does niot access bit 5 to 7 of BUS as 1t has enly 5 bit bmary mformatmn that is transfermd to MAR
via bit 0 to 4 of the BUS. Hence, for 3 MSB there is one' AND gate less and the OR gate is of 3 input.

A Simple Computer Design @

D, ;7}/7 Parallel
T data in
D, >_[>_ RESET, 2 1 0
e Load 7C <o— Clock
D, 2 1.0
__:)“ Parallel 0 —=T
D, out 4 150 T
2 —sz
T,) 8 3108 3 | .7
D, ¢ Decoder 4| —T,
0—} 5 —T;
Dy — 6 —=Ts
ljj_‘ T
Dy ——
L
D

Control of Timing Counter, TC and its connection with Timing

Sequence Detector, TSD

(S SELE-TEST)

9. How 1ong mmmon deooder outputs [, . D remain constant?
10. What arg:the instructions. of this szmple compumr in which ALU places data on BUS?
11. Which: mstmctmnseu;ﬁagﬁ‘? ' B

Now that our simple computer is ready with hardware and instruction sets let us see what computer program
can solve the problem with which we started designing our simple machine. In Table 16.2 we present the
program in mnemonics along with comments on job done by each instruction. Program in binary code as
exists in 32 x 8 memory module will be shown after that.

Thus we need 14 instructions (Table 16.2), all single byte to solve the problem in our simple computer.
We need 12 memory locations for storing numbers. So 14 + 12 = 26 bytes of our 32 byte memory are used for
this problem. For bigger sized problems we need bigger memory and for more complex problem additional
instruction sets and, of course, more complex computer architecture,

Now let us see how program and data remain stored in memory in binary numbers. We know that due
to power-on-reset PC is always initialized with 00000, the first location of the memory (Refer Table 16.3)
where first instruction of the program is to be stored. We use first 14 locations (address 00000 to 01101)
of memory to store instructions. If we store data used in the program, i.e. 11 numbers in next consecutive
locations then addresses 01110 to 11000 get filled. The location 11001, i.e, 26th location of memory can be
used to store the result. Note that, multiplication is achieved by left shifting ACC and thus we don’t need to
store any multiplicand for that. Ifthe 10 numbers to be added are say, 5,2, 1, 3, 8, 6, 5, 2, 7, 4 and the number

Digital Principles and Applications

®

30| saxaydnnu Fuisn sadIAIP JUAIAP Aq SNQ JIAC [013U0)

snd

o en N — O

Dm_<mDm

foloow

lolog | [olnTv

lolrare

{1lhoy

(1a [iln1v

tilvaw

[Lhaw
[Lor Llnv

A Simple Computer Design @

Program to Solve Given Problem with Comments

Instruction Instruction Comment
Number pnemonic '
1 LDA addrl . loads 1st number to ACC, the address of which follows opcode .
2 ADD addr2 &tekeshdnmhuﬁommemerymdaddstolst, stores the som in ACC
3 ADD addr3 similarly adds 3rd number
4 ADD addr4 adds 4th number
5 ADD addr5 adds 5th mumber
6 ADD addrt adds 6th nomber
7 ADD addr7 adds 7th number
8 ADD addr8 ' adds 8th mimber
9 ADD addr9 adds 9th number
10 ADD addrl0 adds-10th number, iow sum of 10 numbers remain available in ACC _
i1t SUB addrll - fetches T1thi no. from memory, subtracts it from sium of 10 nos., stores result in
ACC o B E L - *
12 SHL shifts ACC to left by 1 bit, equivalent to multiplication by 2 -
13 STA addr12 stores content of ACC in memory in the ad&rees available aﬁ.cr opcode
14 HTL balts the.computer

subtracted is say, 9 then we can fill up first 25 locations of memory as shown in Fig. 16.14. The 26th location,
before the program is run, may contain anything but after the program is run will contain the end result, i.e.
68 expressed in binary. Memory content is often shown in hexadecimal instead of binary. Refer to Problems
16.19 and 16.20 for this.

Program Execution

Now let us see how the program gets executed in first few instruction cycles. We note the change in the
value of the registers along with ID and TSD in each clock cycle since the program begins. Table 16.4 shows
sequential progress of our simple computer with every trigger of system clock. As told before PC, TC and §
are power on reset. They all contain zero in the beginning when the computer is switched on.

In first clock cycle, the machine is in T} state given by TSD that decodes TC. At T, content of PC that
contains the starting address of the program is copied to MAR. Corresponding micro operation is shown in
rightmost column of Table 16.4. TC is incremented by 1.

In next clock cycle, TC and PC are incremented by 1, data from memory is loaded to MDR that contains
the first instruction.

In 3 clock cycle TC is incremented, IR gets the opcode and MAR gets address for first data. Note that
decoding of IR is also done in same clock cycle that makes D high, as opcode is 000 (LDA). This completes
the fetch cycle, which is common for all instructions.

In executing LDA instruction the first state is T, state. Here, data from 15th location of Memory (MAR =
01110) which contains 00000101, decimal equivalent of 5 is loaded to MDR. In T, state this data is transferred
to ACC and macro operation LDA is fully executed. This completes the first instruction cycle. Note that
timing counter (7C) is to be reset after execution of data transfer from MDR to ACC and that begins the next
instruction fetch.

o 508) Digital Principies and Applications

Program and Data Section of the Memory

Memory Memory Memory
location address content Comment
nunber in binary
1 - 00000 00001110 Program section begins. Loads 1st no. from location 01110 to ACC.
3MSB 000: Load
2 00001 1100111 3MSBI110: ADD, SLSB 01111: Address of 2nd operand
3 00010 11010000
4 00011 11010001
5 00100 11010010 .
6 00101 HO10011 First 14 locations, i.e. memory address 00000 to 01101 contain instructions.
7 00110 1016100 Here, threc MSBs always refer to opcode. Five LSBs refer to memory
8 00111 11010101 address for imstructions LDA, ADD, SUB, STA. For instructions
P 01000 11010110 SHL and HLT, five LSBs can be anything as they are not referred
10 01001 11010411 anywhere.
i1 01010 11111000 -
12 01011 LG100000
13 01100 0011100t .
14 01101 01600000 Halts computer. Program section ends.
15 01110 00000101 Thedatasectionstarts. Stores 1" number, 5 expressedin binary
16 01111 . 00000010 2nd no. 2 in binary
17+ 10000 - GO000001
18 10001 00000011 -
19 10010 00001000
20 10011 00000110
21 10100 00000101
2 10101 00000010
23 10110 00000111
24 10111 00000100 .
25 11000 00001001 Stores 11th number, 9 that is subtracted from the sum of 10 nos.
26 11001 xxxxxxxx After the program isrunitbecomes 01000100, i.¢. 68 in decimal.
27 1100 xxxxxxxx UNUSED
28 11011 XXXxxxxx UNUSED
29 11100 xxxxxxxx UNUSED
30 - 11101 xxxxxxxx ~ UNUSED
3t 11110 xxxxxxxx UNUSED
32 11n xxxxxxxx- UNUSED

The fetch cycle is repeated in clock cycle 6 to 8. Since the instruction fetched is ADD (opcode 110)
corresponding micro operations are performed in clock cycles 9 and 10 followed by next instruction fetch,
starting again at 11th clock cycle. This continues till we reach 14th instruction HLT which when executed,
sets § flag. This inhibits the system clock output in our design; thus content of all registers and memory will
remain unchanged after that till the computer is switched off.

A Simple Computer Design @

Execution of the Program at Register Level

Clock TC$ TSD PC$ MAR MDR IR D ACC § Micro operation performed
Cycle after clock trigger
1 000 7, 00000 00000 xxxxxxxx Xxx X Xxxxxxxxx 0 MARe PC
2 001 T, 00000 00000 00001110 xxx «x XXXXxxxX 0 MDR & M[MAR], PC+ PC+]
3 010 T, 00001 Ol110 00001110 000 D, xxxxxxxx 0 IReMDR[7:5], MAR « MDR[4.0]
4 011 7, 00001 01110 0060010F 000 D, xxxxxxxx ¢ MDR « M[MAR]
5 100 7, 00001 Q1110 00000101 000 D, 00000101 0 ACC e MDR,TC <0
§ 000 7, 00001 00001: 00000101 600 D, 00000101 0 MAR« PC
7 001 T, 00001 Q0001 11001111 600 D, 00000101 0 MDR « M[MAR], PC+—PC+]
g8 010 T, 00010 OI111- 11001111 KO D, 00000301 0 IR« MDR[7:5], MAR « MDR[4:0]
9 011 T, 00010 OHI1F 00000010 110 D, 00000101 0 MDR « M[MAR]
10 1007, 00010 " OHIY © 00000010 110 D, 00000111 § ACC« ACC+ MDR, TC+0
1t 000 7, 00010 ©00010. 00000010 110 D, 00000111 O MAR&PC
12001 7, 00010 00010 11010000 110 D, 00000111 O MDR « M[MAR], PC«PC+]

¢ PC, TC (also TSD) values shown are the ones before clock trigger while for other registers this is what appears
after clock trigger (taking care from 7C and PC).

Concluding Remark

Before we conclude our computer design exercise let us see what we have achieved and what more is needed
to make this computer fully functional. We have designed a simple processor comprising register arrays,
flag, small memory, BUS and control unit. In short, we have designed a central processing unit (CPU) that
connects to a small memory module and is able to execute programs built on a small instruction set.

What we have not discussed is how data is entered into computer from an external device say, keypad and
also bow it displays data in some output device say, a monitor. We also have not discussed interesting and
important issues like

(i) handling of jump instructions (CPU jumps to an address to fetch an instruction),
(i1} use of subroutines (program under program that is used and called many times),
(iii) memory management (slow-fast, addressing mode details),
(iv) interrupt handling (devices of different priorities asking attention and service of CPU),
{v)} pipelined CPU (doing jobs in parallel if there is no conflict to enhance computer speed, e.g. execution
phase of present instruction in parallel with fetch of next instruction), so on and so forth, These are
covered in detail in titles related to modern computer design courses and an interested reader can refer

to the same,

We shall conclude this chapter by revisiting computer architecture introduced in Section 1.6, carrying
forward the discussions of this chapter. Figure 16.8 represents a basic 8-bit computer. The 8-bit data bus is
bidirectional in nature i.e. CPU is capable of both reading and writing from/to a location defined by 16-bit
address which is a total of 2'¢ = 64K locations. Individual RAM and ROM are of size 16K and this requires 14
bits for addressing. The two MSBs are sent to a 2 to 4 address decoder which generates four Chip Select (CS)

@ Digital Principles and Applications

Clock Reset
Circuit CPU Circuit
INTR WR RD
f 0
D{7:
Address |_._.._.. L__ 7:0]
decoder 14 7y5:14)4
3210 |
A[13:07t
1
|
}
s i G W 1 *
] hd 1 T
1 ' 1
¥ v ¥ 4
INTR CS WRRD A D |({CSWROE A D CS WROE A D ||CSOE AD
Serial Port Control RAM 16Kx8§ RAM 16Kx8 ROM 16Kx8
Address range Address range Address range Address range
DFFF-FFFF 8FFF-CFFFF 4FFF-7FFFF OFFF-3FFFF

Basic architecture of an 8-bit computer

signals, connected to each of the memory and output module generating unique address ranges as specified
in the bottom of the figure. The calculation is as follows. For the ROM, A[15:14] is always 00 and thus all
possible values of A[13:0] generate address ranges 0000 0000 0000 0000 to 0011 1111 1111 1111, i.e. 0000
to 3FFF in hex. Similarly, for the first RAM block, A[15:14] is always 01 and thus all possible values of
A[13:0} generate address ranges 0100 0000 0000 0000 to 0111 1111 1111 1111, i.e. 4000 to 7FFF etc. CPU
read is enabled by activating the control signal, RD (Read). This, in turn, requests outputs of the devices from
which data is to be read to be enabled through OE (Output Enable) or through RD, if it is a serial input-output
port, following which CPU takes the value from data bus. The control signal WR (Write) is activated to
enable CPU writing to devices. Note that WR and RD should not be activated simultaneously. The timing of
these control signals are also important so that data, chip select and addess are properly stabilized to avoid
false reading and writing operations. The ROM is not writable and usually contains sequence of instructions
required for booting. This is usually used during power on of the compuer and also in between, if the
computer is asked to stop all operations and start afresh. The other time a computer may be asked to stop
its usual fetch-decode-execute operations, but only temporarily, is when an interrupt is invoked. Then the
computer’s present state is stored in a designated memory space called stack. The computer comes back to
its usual operating state once the interrupt is served usually through a interrupt service routine (1ISR). There
could be both software and hardware interrupts. The serial port control block shows how a hardware interrupt
can ask service from CPU by activating INTR. Note that the maskable interrupts can be masked (disabled)
by writing into a control register while non-maskable interrupts cannot be disabled. Reset is a non-maskable
interrupt and care should be taken in the design of a computer so that corresponding ISR is in place before
an interrupt is invoked.

A Simple Computer Design @

How many clock cycles are needed to execute the program shown in Table 16.27

Solution The calculation of clock cycles is as follows.

One- LDA Co 5
Nine ADD T 9x5=45
One SUB : ©5
One STA : 5
One SHL : 4
One HLT : 4
TOTAL = 68 clock cycles

(@ Example 16./) Write a program for this computer that adds two positive integers, available in memory
locations adefr] and addr2, multiplies the sum by 5 and stores final result in location addr3.
Consider, the numbers are small enough not to cause any overflow, i.e. data at every stage

Tequire less than 8-bits for its representation.

Solution - Addition of two numbérs is straightforward and can be done using LDA and ADD instructions as done
before. For multiplication with 5 we have to use an indirect technique. Two left shift give maltiplication by 4 and one
more addition will make it multiplication by 5. Alternatively, 5 ADD operations will also give mult1phcauon hy 5.
The progran: can be written as follows _ o e L

LDA addrl

Noae &at, we havc used addrS as mtmnedlate smmge of addmun mmlt Smce in the computer des:gnod theve
is no instruction to place data on a register from 4CC (and also retrieve the same) we had to use memory. Storing
intermediate results in registers speeds up the process but here we are limited by the architecture and instruction set

available. Also note, we could have used any other available memory location for intermediate storage. =~

wple 16.8) Write a program for this computer that performs bit-wise Ex-OR operation on two numbers
available in memory locations addri and addr2. The result is to be stored in location addr3.

Solution Our designed computer can perform only two kinds of logic operanous AND and NOT. Therefore, we
break Ex-OR logic' oftwo mxm'bers say A and Bi in such a way that there is-only AND and NOT operstor.

-*A $ B = AR+ A'B= ({AB’,) (A’B)')' {From DeMorgan’s Theorem}

Thus the program can. be written as shown next. The logic operatmn performed by each mstructmn is shown as
commentaﬁersenuoolon. (TR .

@ Digital Principles and Applications

LDA addry . - .3A. . ..
NOT vy

AND addr2 oS AB T e T
NOT Ay

STA addr3 i

LDA - addr2 B

NOT S . ;'Bf};

AND addrl AR L

NOT ' ,(Aﬁ'}' s

CAND addr3 o ABYUABY
NOT = - ABY.BYY

STA addr3

A computer stores program or binary coded instructions in.its progtam memory. The centrai processing
‘unit comprising set of registers and a control unit sequentiaily fetches this program, decodes it and
executes the same. To accomplish this, an instruction; also called macro operation is broken into series
of micro operations. Register Transfer Language is a very convenient tool to.express-each of these micro -
operations, A simple computer is designed in this chapter that has eight instructions and can perform logic
operations like AND, NOT and arithmetic operations-like addition and subtraction. It can also load data
from memory and store data in memory. The data path and control unit of the computer is designed using .
hardware discussed in earlier chapters of the book. The programming technique for this computer for
various arithmetic and logic problems is also demonstrated. 1750 L R

» accumulator A multipurpose register that and logic functions decided by a set of
stores one operand of all arithmetic and logic selection inputs.
operations and also for memory referenced ®* bus A group of wire providing shared common
data transfers. path between number of devices.

* address bus Group of wires that transfer * central processing unit The brain of computer
address information. that controls the operations of a computer.

» arithmetic logic unit A combinatorial circuit = computer architecture Organization of a

that can perform various types of arithmetic digital computer.

A Simple Computer Design

control bus Group of wires that transfer
control information,

control path The path through which control
signals travel to different devices and make
them perform their assigned tasks.

data bus Group of wires that transfer data.
data memory The part of memory that contains
data.

data path The path through which data moves
from one device to another in a computer,
Jlag A single flip-flop that stores binary
outcome of a certain operation.

instruction register A register that contains
the opcode or binary code of an instruction.
interrupt An event that asks computer’s
immediate attention.

interrupt service routine A set of computer
instructions that serves an interrupt.

macre operation An instruction that a
computer executes in a complete instruction
cycle, consists of series of micro operations.
maskable interrupt Interrupt that can be
disabled.

memory address register A register that
contains address of memory location for all

memory referenced instructions.

= memory data register A register that acts as
buffer between memory and rest of the circuit,
storing data that moves to and from memory.

* micro operation The basic operation, a
computer performs at register level.

* non-maskable interrupt Interrupt that cannot
be disabled.

» gpcode The binary code of an instruction.

» program Series of instructions that
accomplishes a task in a computer.

* program counter A register that stores address
of next instruction.

- program memory The part of memory that
contains instruction.

= register transfer language A language, which
expresses register transfer and condition for
that.

» stack A memory block usually used for storing
a computer’s present state when interrupt is
invoked.

= system clock The clock providing basic
unit of clock cycle from which trigger of all
sequential operations are derived.

. PROBLEMS

16.2

16.3

16.4

For memory configured as in Fig. 16.2, if
immediate addressing is allowed what is the
maximum value of number (in decimal) that
can be loaded through instruction fetch?
‘What is the minimum size required for MAR if
memory addressed has size 1K x 167

For a more complex computer design, 75
different instructions are required. What size
of IR would you likely choose?

Draw data path of the computer described next.
The computer in addition to what is described
in Section 16.2 has two more registers P and
(), which can transfer data to/from ACC via
BUS. It also has a CY flag that stores ALU

overflow and a Z flag that is set when all the
bits of ACC are zero.

€ KT
16.5 What does the following statement mean (X +
Y}:A«B
16.6 Explain the meaning of XY : 4 « B
16.7 Give the final content of 4CC when following
statements are executed
T,: ACC+ ACC® MDR
T,: ACC « ACC’
16.8 State what the following statement performs
for the computer described in problem 16.8

T,: ACC « ACC + MDR

Digital Principles and Applications

CY&T,: Pe ACC
CY & T,: Q « 4CC

16.9 Show how shift left operation with carry is
executed.

16.10 Show how shift right operation with carry can
be executed.

16.11 Consider the first instruction of the simple
computer is replaced by MVI that moves
immediate data (immediate addressing)
to ACC. Write micro operations for this
instruction. What change in hardware is
required for this?

16.12 Consider the first instruction of the simple
computer is replaced by LDI that moves
indirect data (indirect addressing) to ACC.
Write micro operations for this instruction.
Does it require any change in hardware?

16.13 What does LOAD, =T, + T, mean?

16.14 Explain if there will be any problem if by
mistake the control unit is developed on logic
equation LOAD, =T +T,+7T,

16.15 Show using diagrams control inputs to ALU.
Consider IC 74181 (Section 6.10, Chapter 6)
is used as ALU.

. 21 =65535 ,
. A computer operation coded in a group of
binary digits. ,

3. To store address from which next instruction
is fetched. e A

4. The instruction fetches address of location in
which address for operand exists.

5. Register Transfer Language,

. - Control input to ALU.

. A part of instruction cycle that fetches

B

-1 &

16.16 Show using diagrams control inputs to
Memory.

16.17 How many clock cycles are required to execute
program given for Example 16.7?

16.18 How many clock cycles are required to execute
program given for Example 16.87

16.19 If the two numbers used in Example 16.7 are
5 and 8, and data section immediately follows
program section show the memory values in
binary after the program is executed? How
will it be represented in hexadecimal?

16.20 If the two numbers used in Example 16.8 are
F2, . and D6, and data section immediately
follows program section show the memory
values in binary after the program is
executed?

16.21 Write a program that compares two binary
data Iocated in addrl and addr2 of memory
by making all the bits of addr3 one if two
numbers are exactly equal. '

16.22 Write a program that executes following
where Data_,, refers to data corresponding to
address addr.

Data .= (Data_, +Data , +Data__ +
Data) x3—(Data_, +Data , J)x2

instruction from memory that after decoding
gets executed in execute cycle,
8. Resetting 7C a new instruction cycle can begin.
9. Till 1t is loaded in'next fetch éycle.
10 "ADD, SUB; AND, NOT. '
1. HET. 0 T
12. It goes on execating by loading next content
' -of memory which housés first number and
* since three MSB are 000 opcode decodes it
as an LDA instruction.

